Gradio
2025年7月2日小于 1 分钟
保存音频
import gradio as gr
import numpy as np
import soundfile as sf # 需要安装 soundfile 库来保存音频数据
def save_audio(audio):
sr, y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
# 保存归一化后的音频数据为 WAV 文件
sf.write("speak.wav", y, sr)
return "提交成功"
demo = gr.Interface(
save_audio,
gr.Audio(sources=["microphone"]),
"text",
)
demo.launch()
import gradio as gr
def greet(name):
prompt_text = f"user\n{name} \n assistant \n"
input_ids = tokenizer(
prompt_text, return_tensors="pt", add_special_tokens=False
).input_ids
generator = model.generate(
input_ids,
generation_config=stream_config,
do_sample=True,
)
stream_result = ""
for x in generator:
chunk = tokenizer.decode(x, skip_special_tokens=True)
print(chunk)
stream_result += chunk
yield stream_result
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.queue()
demo.launch()